11,991 research outputs found

    The Leptoquark Hunter's Guide: Large Coupling

    Get PDF
    Leptoquarks have recently received much attention especially because they may provide an explanation to the RD(∗)R_{D^{(*)}} and RK(∗)R_{K^{(*)}} anomalies in rare BB meson decays. In a previous paper we proposed a systematic search strategy for all possible leptoquark flavors by focusing on leptoquark pair production. In this paper, we extend this strategy to large (order unity) leptoquark couplings which offer new search opportunities: single leptoquark production and tt-channel leptoquark exchange with dilepton final states. We discuss the unique features of the different search channels and show that they cover complementary regions of parameter space. We collect and update all currently available bounds for the different flavor final states from LHC searches and from atomic parity violation measurements. As an application of our analysis, we find that current limits do not exclude the leptoquark explanation of the BB physics anomalies but that the high luminosity run of the LHC will reach the most interesting parameter space.Comment: 33 pages + references, 15 figures, 9 tables, v2: references adde

    Hamiltonian lattice quantum chromodynamics at finite density with Wilson fermions

    Full text link
    Quantum chromodynamics (QCD) at sufficiently high density is expected to undergo a chiral phase transition. Understanding such a transition is of particular importance for neutron star or quark star physics. In Lagrangian SU(3) lattice gauge theory, the standard approach breaks down at large chemical potential μ\mu, due to the complex action problem. The Hamiltonian formulation of lattice QCD doesn't encounter such a problem. In a previous work, we developed a Hamiltonian approach at finite chemical potential μ\mu and obtained reasonable results in the strong coupling regime. In this paper, we extend the previous work to Wilson fermions. We study the chiral behavior and calculate the vacuum energy, chiral condensate and quark number density, as well as the masses of light hadrons. There is a first order chiral phase transition at zero temperature.Comment: 23 pages. Version accepted for publication in Physical Review
    • …
    corecore